Experiment Thrust

Developing Theoretical Concepts for Experimentation

Theoretical Concepts for Experimentation

Developing Theoretical Concepts for Experimentation

- Parallel approach to Experimentation Thrust
 - Overall focus on augmenting and developing macrocognition concepts
- A) Asking how can we enrich understanding of foundational collaboration concepts through empirical studies?
- B) Testing macrocognition concepts through refined measurement techniques

A) Presenting overarching concepts for macrocognition experiments
- Understanding Problem Space and Impact of Task

B) Discussing metrics experimentation to support more diagnostic and construct valid understanding of macrocognition
Overarching Research Questions for SUMMIT Experimentation

- **How do task factors alter macrocognitive processes?**
 - How do changes to task complexity (e.g., low versus high integrative complexity) impact macrocognitive stages and/or processes?
 - How do changes to task structure (e.g., ill-structured versus well-structured) impact the manner in which teams collaborate as they work through macrocognitive stages and/or processes?

- **How does distributed interaction influence differing elements of collaboration?**
 - What happens to information processing within and across teams when members are not all co-located?
 - How do changes to the task interact with distributed interaction?

- **What is the impact of agent-based team members?**
 - How does inclusion of agents supporting certain macrocognitive processes impact overall stages and/or processes?
 - Do task variations interact with inclusion of agents in their impact on macrocognition?

- **Can we triangulate on macrocognitive processes through improved measures?**
 - What measures provide the most diagnostic utility as to assessing macrocognition across the stages of collaborative problem solving?
Macrocognition and Experimentation with Task Variation

Background
- CKI program now looking at macrocognition in varied tasks

SUMMIT Goal
- Assess how variation of theoretically important factors, within a given testbed, alters macrocognition

Rationale
- *Practical Significance*
 - Research across variety of situational factors would support understanding and improving operational performance

- *Theoretical Significance*
 - Research on macrocognition would benefit from further integration of cognitive science concepts
 - *Task classifications would clarify influence of task structure and complexity to help better understand macrocognition*
Developing Theoretical Concepts for Experimentation

Macrocognition – *Problem Space and Influence of Task*

- Understanding problem space theory in context of macrocognition (Newell & Simon, 1972)
 - the mental space in which the problem solver must encode problem elements -- defining goals, rules and other aspects of the situation... [that] represent:
 - the initial situation presented
 - the desired goal situation
 - various intermediate states, imagined or experienced
Theoretical Concepts for Experimentation

Macrocognition - **Problem Space and Influence of Task**

- **Reifying Problem Space Concept through Operationalization of Task Variability**
 - *Question is how do task factors alter problem space*
 - The task defines the “topology” of the problem space
 - *Dictates paths through the problem space available to the problem solver*
 - *Some successfully lead to solution*
 - *Collaborative process determines path choice*

- **Experimentation will explore how this alters macrocognitive processes**
 - **Overarching Hypothesis**
 - *Differential impact of task manipulations on subcomponents of macrocognition*
 - *For example, there will changes to quantity and quality of knowledge building when task is more ill-structured?*
Theoretical Concepts for Experimentation

Macrocognition - *Problem Space and Influence of Task*

Theoretical Issue – Problem Space and Task Complexity (Wood, 1986)

- **Component Complexity**
 - Amount of distinct acts associated with task and amount of cues/problem elements to be processed

- **Coordinative Complexity**
 - Degree to which task variables need to be integrated for successful task completion

<table>
<thead>
<tr>
<th>Task Complexity</th>
<th>Component Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Coordinative Complexity</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>
Theoretical Concepts for Experimentation

Macrocognition - *Problem Space and Influence of Task*

Theoretical Issue – Problem Space and Task Structure (Campbell, 1991)

- Determined by the number of task paths to follow and/or the amount of ambiguity or uncertainty associated with the paths.

 - **Multiple Paths**
 - Degree to which distinct outcomes are possible in task environment

 - **Degrees of Uncertainty**
 - Degree to which task alternatives are:
 - Ambiguous as to the path elements and/or
 - Differ in likelihood of occurring (i.e., amount of ambiguity associated with outcomes)

<table>
<thead>
<tr>
<th>Task Structure</th>
<th>Multiple Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Degree of Uncertainty</td>
<td>Low</td>
</tr>
</tbody>
</table>

University of Central Florida
Institute for Simulation & Training

ILLINOIS
University of Illinois at Urbana-Champaign

ASU Arizona State University

University of Pittsburgh
Theoretical Concepts for Experimentation

- **Task Complexity** - *Component Complexity* in SUMMIT
 - Amount of distinct acts associated with task and amount of cues/problem elements to be processed
 - MACRO-COG missions composed of several operations
 - Manipulating number of operations increases component complexity
 - For example, plans required for each operation - the more elements required in the plan the more complexity
 - Also number of resources, team members, and rules will be varied to manipulate component complexity

NEO-based Scenario Development

Rebel forces attempting to overthrow government. Generate plans to aid government and civilians.

Iterative Planning Scenario
- Multiple planning events at different locations
- Various constraints including interdependencies and resource limitations
- Five team members:
 - Weather/Environment
 - Supply Specialist
 - Transportation
 - Intel 1 (Local)
 - Intel 2 (Global)
Theoretical Concepts for Experimentation

- **Task Complexity - Coordinative Complexity** in SUMMIT
 - Degree to which task variables need to be integrated for successful task completion
 - MACRO-COG allows for manipulating interdependencies between roles
 - For example, weather person knows critical for equipment person (who needs to decide if it is too windy to use a UAV for example)
 - Scenario creation allows for determining amount of such interdependencies
Theoretical Concepts for Experimentation

- **Task Structure - Multiple Paths and Degree of Uncertainty in SUMMIT**
 - MACRO-COG allows for manipulations of resources
 - Quantity and variety resources
 - Alter number of possible plans
 - Influence number of possible outcomes
 - Some resources are information resources
 - Each differing degrees of certainty (e.g., going to intel and weather roles)
 - Accessing information has different costs
Summary - Concepts for Experimentation

Experiment Thrust SUMMARY

A) Overarching concepts for macrocognition experiments
 - How do task factors alter macrocognitive processes?
 - How does distributed interaction influence differing elements of collaboration?
 - What is the impact of agent-based team members?

B) Metrics experimentation to support more diagnostic and construct valid understanding of macrocognition
Thank you
Meta-Cognitive:
- individual understanding of problem conditions
- individual mental model development of situational significance

Information Processing:
- problem identification
- understanding problem task
- establish team communication and trust
- establish data filtering methods
- establish meaning transfer conventions

Knowledge Building:
- problem definition
- individual task knowledge
- individual team knowledge

Communication Mechanism for Information Processing and Knowledge Building (applies to all stages):
- presenting individual information
- disagreement
- questioning

- discussing individual information
- negotiating perspectives
- discussion of possible solutions

- discussing team generated information
- providing rationale for individual solutions
- agreement

Team Knowledge Base Construction

Collaborative Team Problem Solving

Team Consensus

Outcome Evaluation and Revision

Problem Area Characteristics

Collaborative Situation Parameters:
- time pressure
- information/knowledge uncertainty
- dynamic information
- large amount of knowledge (cognitive overload)
- human-agent interface complexity

Team Types
- asynchronous
- distributed
- culturally diverse
- heterogeneous knowledge
- unique roles
- command structure (hierarchical vs. flat)
- rotating team members

Operational Tasks
- team decision making, COA selection
- develop shared understanding
- intelligence analysis (team data processing)

Collaboration Stages

Meta-Cognitive:
- goal development
- team mental model of problem
- team plan to solve problem

Information Processing:
- goal definition
- iterative information collection & analysis
- develop, rationalize, & visualize solution alternatives

Knowledge Building:
- team mental model of team
- team task knowledge
- domain expertise
- shared understanding
- collaborative knowledge

Collaboration Stages

- communicate goal requirements
- exit criteria?

STRUCTURAL MODEL OF TEAM COLLABORATION